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Executive Summary 

Overview 

The range a target can be detected on the battlefield is a valuable piece of 
information for the battlefield commander. Detection and recognition 
ranges depend upon the target and background characteristics, 
atmospheric propagation, and sensor performance. Weather tactical 
decision aids provide information on sensor performance under adverse 
weather conditions. 

The Target Acquisition Weather Software (TAWS) is an updated version 
of the U.S. Air Force Electra-Optical Tactical Decision Aid. The TAWS 
provides U.S. Air Force, Navy and Army mission planners and 
warfighters with appropriate information for optimal sensor and/or 
weapon systems selection, acquisition range determination, and mission 
routing under degraded weather conditions. The TAWS was originally 
constructed to predict detection and lock-on ranges only. Because the 
U.S. Army extensively makes use of recognition and identification ranges, 
methodologies for adding this information to the TAWS were examined. 
The leading algorithm, and thus, a contender for the replacement of the 
current algorithm, is Acquire. 

Physics-based Tactical Decision Aids (TDA)s, such as TAWS, employ 
physics calculations that have their basis in theory or measurements. 
Thus, a physics-based TDA employs routines and physics that allow it to 
ascertain the probability of detecting a given target at a given range 
under existing or predicted weather conditions. The effects and 
methodology for determination of the range a target is detected under 
adverse weather conditions at infrared (IR) wavelengths is the subject of 
this report. The sensor performance model Acquire and the senor 
performance model in TAWS both use what is known as the equivalent 
bar pattern approach; however, the underlying assumptions of each 
algorithm are considerably different. The purpose of this report is to 
show the differences between these two methodologies and to examine 
weather effects on target-acquisition ranges. 
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Background 

Typical performance prediction models for resolved targets (a target is 
considered to be resolved when the target-angular subtense nominally 
exceeds the sensor’s angular subtense in both vertical and horizontal 
dimensions at the range of interest) treat the target with the bar/target 
equivalency criteria and the sensor with the minimum resolvable 
temperature (MRT) function. Bar- and target-signal equivalency is 
established by equating the bar pattern temperature difference to the 
target average temperature difference. The detection range is sharply 
bounded in that it can never exceed the range at which the target ceases 
to be resolved, that is the (detection) range = target size/resolution. 

Models for predicting the detection range of unresolved targets typically 
rely strictly on target-signal strength for detection. These models 
typically abandon both the bar- and target-equivalency criteria and the 
MRT approach. Unresolved target models are often called “hot spot” or 
“star detection” models because they rely on high-apparent contrast for 
detection. The “target” is a square or circle with dimensions matched to 
the high temperature target area of interest. This target spot detection 
methodology applies to cases the target is viewed against a uniform 
background, and detection occurs when the signal-to-noise ratio on the 
display element that subtends the target exceeds that of the background. 
The methodology for spot detection applies only to the detection of the 
target (its discrimination from the background), and not to levels of target 
discrimination. The sensor function is the minimum detectable 
temperature (MDT). 

The MDT is only appropriate for targets against a uniform or 
unstructured background, for example, aircraft against a clear or overcast 
sky or vehicles in a desert background. Searching for tanks against a 
varied terrain background requires the MRT approach. Additionally, the 
MDT approach only represents detection whereas the MRT approach, 
which may also be used for detection, is required for target recognition 
and identification. 

Target detection, recognition, and identification methodology applies to 
situations in which the target is embedded in a non-uniform or cluttered 
background and it is necessary to separate the target characteristics from 
the background. The target discrimination MRT methodology, based on 
the Johnson cycle criteria in Acquire and Schmieder’s criteria in TAWS, 
can be used for the prediction of target-acquisition range at 



discrimination levels of detection, recognition, and identification. Both 
the TAWS and Acquire can use MDT to predict detection range also. 

The TAWS currently uses Schmieder’s work implemented to predict 
detection; higher discrimination levels, such as recognition and 
identification, are not included. Because Acquire is currently both the 
U.S. Army and Air Force standard for target acquisition, and it predicts 
ranges for discrimination levels of detection, recognition, and 
identification, it was decided to replace the current sensor performance 
model (PM) resident in the TAWS with Acquire. However, this 
replacement raises the question of what differences may arise due to 
different methodologies between the SPMs in the TAWS and Acquire. To 
answer this question for IR sensors, a comparison of static target 
discrimination methodologies and the resultant target-acquisition ranges 
produced by the TAWS and Acquire was undertaken. It should be noted 
that this comparison in no way should be construed as a validation of the 
target-acquisition ranges. Rather we are examining what, if any, 
differences that arise due to the underlying SPMs and the methods that 
they implemented. 

To compare these two complex target-acquisition models required 
standardization of as many parameters as possible. To accomplish this, 
one weather scenario was used in conjunction with one sensor and target, 
both with fixed orientations. Thus, a winter scenario was chosen and 
examined using an exercised T-80 Soviet main battle tank against two 
backgrounds (vegetation and snow) at IR wavelengths. The sensor and 
tank were aligned such that the sensor always had a frontal view of the 
tank; the sensor height was fixed at 300 ft facing north. The date was 
fixed at 21 December at a local time of 12N; the location was fixed at 
latitude of 37’32’ N, longitude of 127”OO’ E (Seoul, South Korea). The 
weather conditions included clear skies with varying visibility and 
relative humidity and overcast skies with varying visibility and relative 
humidity. Additional cases were run including light/heavy fog 
conditions, snow, drizzle, and rain. 

Conclusions 

The SPM in the TAWS is based on Schmieder’s image-based work and 
thus requires additional algorithms to determine the effects of clutter in 
the scene; these algorithms are not necessarily intuitive. Since Acquire’s 
target transform probability function and Schmieder’s detection 
probability as a function of resolution, agree reasonably well under 
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moderate clutter conditions, and because Acquire is an industry, U.S. 
Army and Air Force standard, it was decided to replace the current SPM 
with Acquire. Clutter levels can be accommodated in Acquire by varying 
the N50 parameter. 

The incorporation of the Acquire SPM into the TAWS is scheduled for the 
TAWS Version 3, which will be released for use in 2001. The comparisons 
shown here, of target-acquisition range output from the current version 
of TAWS with output from Acquire, provide positive feedback on the 
benefits of this enhancement to TAWS, while maintaining existing 
interfaces and providing comparable target-detection range predictions. 
The primary benefit of this enhancement will be the ability to specify 
target acquisition discrimination levels, including detection, recognition, 
and identification. 

Because the cases examined in this report are limited to a winter scenario 
in Korea, specific quantitative results of the selected weather parameters’ 
impacts on target-detection range cannot be generalized to all situations. 
However, these cases do highlight the importance of considering accurate 
atmospheric conditions in target-acquisition predictions. Results show a 
smaller weather impact to Acquire detection ranges than predicted using 
the current TAWS SPM under conditions of fog or precipitation. 
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1. Introduction 

The range a target can be detected on the battlefield is a valuable piece of 
information for the battlefield co mmander. Detection and recognition 
ranges depend upon the target and background characteristics, 
atmospheric propagation, and sensor performance. Weather tactical 
decision aids (TDA)s, which provide information on sensor performance 
under adverse weather conditions, come in two forms: 

1. rule based and 

2. physics based. 

Rule-based TDAs, such as the U.S. Army’s Integrated Weather Effects 
Decision Aid (IWEDA) [l] are constructed using observed impacts that 
have been collected from field manuals, training centers and schools, and 
subject matter experts. 

Physics-based TDAs, such as the Target Acquisition Weather Software 
(TAWS) [2] and Acquire [3], employ physics calculations that have their 
basis in theory or measurements. Thus, a physics-based TDA employs 
routines and physics that allow it to ascertain the probability of detecting 
a given target at a given range under existing or predicted weather 
conditions. The effects and methodology for determination of the range 
at which a target is detected under adverse weather conditions at IR 
wavelengths is the subject of this report. The TAWS and Acquire both 
use what is known as the equivalent bar pattern approach; however, the 
underlying assumptions of each algorithm are considerably different. 
The purpose of this report is to show on the differences between these 
two methodologies and to examine weather effects on target-acquisition 
ranges. 

. 
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2. Background 

2.1 Minimum Resolvable and Detectable Temperatures 

Typical performance prediction models for resolved targets (a target is 
considered to be resolved when the target-angular subtense nominally 
exceeds the sensor’s angular subtense in both vertical and horizontal 
dimensions at the range of interest) treat the target with the bar- and 
target-equivalency criteria and the sensor with the minimum resolvable 
temperature (MRT) function. This methodology assumes that resolved 
targets are detected, based on observer pattern recognition. Signal 
strength only needs to be sufficient in order to define the pattern. The 
signal is typically defined as the temperature difference between the 
average temperature of the target and a uniform background temperature 
as seen by the sensor. Bar- and target-signal equivalency is established by 
equating the bar pattern temperature difference to the target average 
temperature difference. The detection range is sharply bounded so that it 
can never exceed the range at which the target ceases to be resolved, that 
is the (detection) range = target size/resolution. This is the maximum 
range at which a periodic target can be faithfully reproduced; thus a 
target is considered unresolved if the projected sensor instantaneous field 
of view (IFOV) is greater than 80 percent of the target’s critical 
dimension. The percentage is taken to be 80 percent because other sensor 
apertures, in addition to the detector IFOV, cause the effective system 
IFOV to be slightly larger. 

Models for predicting the detection range of unresolved targets typically 
rely strictly on target-signal strength for detection. These models 
typically abandon both the bar- and target-equivalency criteria and the 
MRT approach. Unresolved target models are often called hot spot or star 
detection models because they rely on high apparent contrast for 
detection. The target is a square or circle with dimensions matched to the 
high temperature target area of interest. This target spot detection 
methodology applies to cases in which the target is viewed against a 
uniform background, and detection occurs when the signal-to-noise ratio 
on the display element that subtends the target exceeds that of the 
background. That is, a sufficient amount of target energy reaches a 
detector element to create a hot spot on the system display. (For this 
reason, spot detection is also referred to as star detection.) The 
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methodology for spot detection applies only to the detection of the target 
(its discrimination from the background), and not to levels of target 
discrimination. The sensor function is the Minimum Detectable 
Temperature (MDT). Detection range predictions are not sharply 
bounded with this unresolved target methodology since target-signal 
strength does not abruptly disappear after becoming unresolved. 

The MDT is only appropriate for targets against a uniform or 
unstructured background; for example, aircraft against a clear or overcast 
sky or vehicles in a desert background. Searching for tanks against a 
varied terrain background requires the MRT approach. Additionally, the 
MDT approach only represents detection whereas the MRT approach, 
which may also be used for detection, is required for target recognition 
and identification. If a target is hot enough, the MDT approach predicts 
target detection even though the target may be smaller than a forward- 
looking infrared (FLIR) detector element. For all practical purposes, the 
MDT approach is not used in the Army’s combat simulations since 
recognition or identification is required before firing on a target. It 
should also be noted that in a cluttered environment the target would not 
be the only hot spot. 

2.2 Sensor Performance Models 

Target detection, recognition, and identification methodology applies to 
situations in which the target is embedded in a non-uniform or cluttered 
background and it is necessary to separate the target characteristics from 
the background. The target discrimination MRT methodology, based on 
the Johnson cycle criteria [4] in Acquire and Schmieder’s criteria [5,6] in 
the TAWS, can be used for the prediction of target-acquisition range at 
discrimination levels of detection, recognition, and identification. Both 
the TAWS and Acquire can use MDT to predict detection range also. 

Acquire, developed by the U.S. Army Night Vision and Electronic 
Sensors Directorate (NVESD), is an analytical model that predicts target- 
detection and discrimination-range performance for systems that image 
in the visible, near-IR, and IX-spectral bands. Ranges and probabilities 
predicted by the model represent the expected performance of an 
ensemble of trained military observers with respect to an average target 
having a specified signature and size. 
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The U.S. Air Force Research Laboratory’s (AFRL) Electra-Optical Tactical 
Decision Aid (EOTDA) [7] was developed to provide the user with a 
single piece of software to evaluate the combined effects of 
target-to-background contrast, atmospheric transmission, and sensor 
performance on the range at which a target can be detected by an imaging 
device. The model treats detection by television, image intensifiers, and 
thermal imaging devices. The TAWS, a Tri-Service program, is an 
upgrade of the EOTDA. 

The TAWS currently uses Schmieder’s work implemented to predict 
detection; higher discrimination levels, such as recognition, and 
identification, are not included. Because Acquire is currently both the 
Army standard [B] and a U.S. Air Force standard for target acquisition, 
and because it predicts ranges for discrimination levels of detection, 
recognition and identification, it was decided to replace the current 
sensor performance model (SPM) resident in the TAWS with Acquire. 
However, this replacement raises the question of what differences may 
arise due to different methodologies between the SPMs in the TAWS and 
Acquire. To answer this question for IR sensors, a comparison of static 
target-discrimination methodologies and the resultant target-acquisition 
ranges produced by the TAWS and Acquire was undertaken. It should 
be noted that this comparison in no way should be construed as a 
validation of the target-acquisition ranges per se. Rather we are 
examining what, if any, differences that arise due to the underlying SPMs 
and the methods that were implemented. 

2.2.1 Acquire SPM and Methodology 

During the 195Os, the military developed electro-optical image 
intensifiers, which provided enhanced visual surveillance capabilities 
under conditions of limited visibility. The complexity of these intensifiers 
and associated target-acquisition systems required a methodology for 
evaluating performance characteristics. John Johnson, of the then U.S. 
Army Engineer Research and Development Laboratories (ERDL) 
(currently NVESD), presented results of experiments with human 
observers conducted at ERDL to determine the resolution required of a 
system to perform certain target-interpretation processes such as target 
detection and recognition. He referred to these as decision responses and 
said that the processes were dependent upon the characteristics of the 
optical message, the properties of the intensifier device, and the 
physiological response of the human readout processes. Through a series 
of experiments using trained observers looking at targets and bar 
resolution diagrams, Johnson [4] developed a method relating the decision 
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response to the number of bars (line pairs) normalized to the shortest 
target dimension that an observer needed to see to make a decision 
(detection, recognition, etc.). 

The methodology developed by Johnson was simple and straightforward. 
In the laboratory, scale models of various military targets were moved to 
a distance where they could just be detected as viewed by an observer 
through an image intensifier. Bar charts, with the same contrast as the 
scale models, were then placed in the observer’s field of view at the same 
range as the target. The spatial frequency (line pairs) resolved by the 
observer was then determined as a function of contrast. This same 
methodology was used for determining the line pairs required by the 
observers to recognize the object seen as a tank. The spatial frequency of 
the pattern was specified in terms of the number of lines in the pattern 
subtended by the object’s minimum dimension as illustrated in figure 1. 

Figure 1 shows three bars across the tank’s shortest dimension as seen by 
an observer; this is the criterion Johnson used for recognizing that the 
object was a tank. Further, Johnson found that the normalized line-pair 
resolution required for a particular “decision response” was nearly 
constant for the group of nine military targets he employed. In the case 
of target detection, that was 1.0~line pairs per shortest target dimension. 
These normalized (to the shortest target dimension) line pair values 
required for a decision were found to be independent of contrast and 
scene signal to noise ratio as long as the contrast on the bar chart was the 
same as the target contrast. The results showed that decision levels for 
military targets may be considered equivalent to bar patterns of 
appropriate spatial frequencies. 

Figure 1. Equivalent bar 
pattern. 
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Figure 2. Target- 
acquisition r 
methodology. 

I 

This methodology, which provided target-discrimination criteria based 
upon resolution, gained widespread acceptance within the industry and 
became the accepted criteria for performance measurement of optical 
systems. These criteria were referred to as the Johnson Criteria or 
equivalent bar pattern approach. 

In 1974,16 years after publishing his original paper, Johnson modified his 
original work and extended it to cover IR systems [9]. This paper 
emphasized that the values for the various decision levels are 
representative values, essentially average values required for 50 percent 
probability, and must not be construed as rigid or optimum values for 
specific targets and target-aspect views. The values associated with the 
various decision levels remained the same, (e.g., 1.0 line pairs for 
detection) except for recognition, which changed slightly. This paper also 
recommended and provided procedures for using the concept of MRT for 
thermal sensors. Johnson’s methodology is schematically represented in 
figure 2. [lo] 

Pmbability 

The MRT is defined as the temperature difference between a uniform 
background and the bars of a four-bar pattern, each bar having a 
7~1 aspect ratio (so the overall pattern will be a square), which is required 
by a trained observer to just resolve all four bars when viewing the 
pattern through an imager. [ll] The left side of the figure shows the 
resolvable temperature difference (contrast) versus the maximum 
resolvable bar pattern (spatial frequency) as a function of contrast. For a 
specific target-contrast level, the maximum resolvable spatial frequency is 
the highest spatial frequency at which a human observer can still 
recognize the four distinct bars and not one or two blobs. Thus, the 
temperature difference required to resolve the four bars increase, as the 
bars get smaller. This maximum resolvable spatial frequency is a 
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function of contrast (visual or thermal) and is the minimum resolvable 
contrast (MRC) in the visual or MRT difference curve in the thermal. In 
the figure, the bars represent the generic formulation, whereas the solid 
line would represent the target contrast and sensor resolution for a 
specific sensor. With knowledge of the target’s contrast (AT in the JR), 
critical dimension, range, and the atmospheric attenuation, the number of 
resolvable cycles, N, across the target’s critical dimension can be 
determined by 

H 
N=f+, (1) 

where fX is the maximum resolvable spatial frequency of the sensor (in 
cy/mr) at the apparent AT, (usually in “K), Htarg is the target-critical 
dimension (in meters) and R is the range (in kilometers). The apparent 
thermal contrast is determined by 

AT, = AT T(R) , (2) 

where T(R) is the atmospheric transmission. Under the assumption of a 
homogeneous atmospheric path the transmission may be found using 
Beer’s law 

T(R) = e-j3R (3) 

where j3 is the atmospheric extinction coefficient determined from an 
atmospheric propagation code [12,13]. We now need a way to correlate N 
with the discrimination level: detection, recognition, and identification. 
Johnson did this by establishing the so-called target transform probability 
function (TTPF). [9] The TTPF, shown in the right-hand section of 
figure 2, was derived from laboratory psychophysical experiments in 
which the ability of observers to perform a particular discrimination task 
as a function of resolvable cycles across the target-minimum dimension 
was measured. For a given discrimination task, the TTPF represents the 
50-percent point, referred to as NSO, as determined from this ensemble of 



range. Thus, if the range is unknown, but information is available about 
the target-critical dimension, the target/background AT, and the sensor 
response curve, then a solution can be found through iteration for the 
range at a predetermined Pd. 

As FLIRs advanced from first to second generation, their resolution 
increased so that there was nearly equal resolution along the scan 
direction and perpendicular to it. This, in part, necessitated a change in 
the original one-dimensional (1D) version of Acquire. An updated 
version of Acquire, discussed in detail in reference 11, was issued in June 
1990. The model update consisted of two parts: 

1. FLlR90, which predicts laboratory measures and 

2. a two dimensional (2D) version of Acquire, which predicts field 
performance. 

In FLIR90, predicted or measured horizontal and vertical MRTs are 
averaged at a particular temperature using 

&ff = 6 * fy)“. 

This effective spatial frequency applies to the effective MRT used along 
with modified values of NSO for the different discrimination tasks to 
predict range performance. The NSO values for 1D or 2D are presented in 
table 1. The NSO for a particular task, using the more recent 2D version of 
the model, is found by multiplying the original 1D N.50 values by 0.75. 
The amount of shift was determined by requiring the range predictions 
for the 2D model to correctly predict the results of field tests, which 
served as validation for the original (1D) model. The discrimination 
levels in figure 2 are for second generation FLIRs. As an example, if we 
have a target with a critical dimension of 3 m at a range of 3 km, with an 
apparent contrast that would give a maximum resolvable frequency of 
3 cycles/mrad, this would lead to a probability of recognition, for a 
second generation FLIR, of 50 percent; with a first generation FLIR, this 
would lead to a probability of recognition of 25 percent. 

* The discussion in this paragraph relies heavily m r+rrnce 11. 
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apparent contrast that would give a maximum resolvable frequency of 
3 cycles/mrad, this would lead to a probability of recognition, for a 
second generation FLIR, of 50 percent; with a first generation FLIR, this 
would lead to a probability of recognition of 25 percent. 

Table 1. NW as a function of the Acauire version 

Detection 

Recognition 

Identification 

Acquire vc 

1D 
1.0 

4.0 

8.0 

sion 

2D 
.75 

3.0 

6.0 

2.2.2 TAWS SPM and Methodology 

The TAWS SPM is derived from work done in the 1980s at the U.S. Air 
Force Avionics Laboratory (now part of AFRL), which led to the 
development of a “research grade” TDA. The main difference between 
the TAWS and the Avionics research grade code lies primarily in the 
underlying thermal model, the Thermal Contrast Model 2-TCM2, with 
TAWS using a scaled-down version of that model. The SPM resident in 
TAWS uses the equivalent bar-chart approach but differs from Acquire 
by directly incorporating clutter effects for 50 percent probability of 
acquisition. The TAWS predicts lock-on range based on signal-to-noise 
ratio thresholds, hot spot detection based on MDT methodology, and 
discrimination detection range based on MRT methodology. Thus, all 
other parameters being equal, the TAWS detection ranges should be 
approximately equal to those predicted by Acquire at the 50 percent 
probability of detection level for moderate clutter (see discussion below). 
Clutter is automatically computed, based on an empirical algorithm [14], 
and is a strong factor in determination of the number of cycles on target. 

During the 198Os, Dave Schmieder at the GTRI examined the effect of 
clutter on target detection. [5,6] He found that the amount and nature of 
background clutter had a significant impact on the probability of target 
detection. Schmieder first looked at scene radiance standard deviation as 
a clutter measure. However, this measure had the deficiency of giving 
large clutter values to relatively uncluttered scenes when those scenes 
possessed several intensity modes. Moreover, this definition, like many 
other amplitude measures [5], lacked a weighting factor based on target 
size. Both amplitude and target size measures appeared to be required to 



predict observed trends. Since existing definitions appeared 
inappropriate, Schmieder redefined the term. The clutter definition he 
used was a scene radiance standard deviation computed by averaging the 
radiance variances of contiguous scene cells over the whole scene and 
taking the square root of the result. This is formulated as 

clutter = &OF I Nj1l2 , 

where oi is the radiance standard deviation for the ith cell and N is the 
number of contiguous cells in the scene. This definition implicitly 
included both target size and intensity measures and produced higher 
values for scenes that looked more complex and cluttered. It also avoided 
yielding a large clutter value for relatively uncluttered scenes that still 
contained variations in intensity. Additionally, it accounted for clutter 
object sizes close to the target size weighing more in the clutter 
calculation. However, as with other definitions of clutter, this definition 
introduces its own set of problems. Scene imagery is required to 
adequately determine oi and eq (5) is not scale invariant but depends on 
the cell size selected for calculation. Schmieder took the cell size to be 
square in shape with side dimensions of approximately twice the target 
height. However, if the scene under examination contains more than one 
type of target (man, tank, bridge, etc.) the cell size must be redefined for 
each target examined, resulting in different values for oi and N. 
Based upon this definition, Schmieder performed experiments with 
observers which showed that clutter could be categorized according to 
the signal-to-clutter ratio (SCR) where the signal was the temperature 
difference between the maximum/ minimum target temperature as seen 
by a sensor and the background temperature where the clutter was 
defined as above. Schmieder found that high clutter exhibited a SCR of 
< 1, moderate clutter an SCR of 1 to 10, low clutter an SCR > 10 and < 40, 
and no clutter effects could be assumed if the SCR 2 40. Furthermore, 
Schmieder’s data showed that for a detection probability of 50 percent, 
the number of cycles (line pairs) required for detection of a target varied 
between 0.5 for low clutter to 2.5 for high clutter, with moderate clutter 
requiring approximately 1.0 cycle. 

Schmieder concluded that acquisition levels are a strong function of 
clutter as well as resolution and that range prediction models must 
include clutter effects. Because the number of line pairs per target- 
angular subtense necessary for detection is inversely proportional to 
detection range, changes in SCR can be expected to significantly alter 
target-detection range predictions. 
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The TAWS detection methodology uses Schmieder’s SCR algorithm at the 
50 percent probability of detection level to determine whether MRT or 
MDT formalization should be used and to calculate target-acquisition 
ranges. The SCR may be thought of as the ratio of hot/cold spot ATT 
(i.e., maximum/ minimum target temperature - background mean 
temperature) to clutter equivalent temperature (CT), thus 

SCR = ATT/ CT. (6) 

The value of CT is determined by the IR scene complexity (a measure of 
the number of objects in the scene competing with the target) in 
conjunction with the background scene contrast (SC) in the target’s 
vicinity. Since detection methodology and acquisition range both depend 
upon SCR (discussed in some detail below). 

The TAWS determination of acquisition range is fixed at 50 percent 
probability of detection. Thus, as mentioned above in the section on 
Acquire MRT methodology, a solution for the range can be found if the 
target’s critical dimension, target and background temperatures, and 
MRT sensor curve are all known. While TAWS uses this methodology, 
there are significant differences from Acquire-most notably in the 
determination of the number of line pairs on target, N. 

2.2.2.1 Resolved Versus Unresolved Targets 

Whether the TAWS computes the detection range via MRT or MDT 
methodology depends on whether the target is resolved or unresolved at 
a given sensor to target range and the SCR at that range. 

For resolved targets, if the SCR > 40, indicating little or no clutter, MDT is 
used with the target contrast based on the temperature difference 
between the hottest (or coldest) facet of the target seen by the sensor and 
a given background; this is referred to as ATM. Even though the target 
is resolved, Schmieder did not recommend using MRT because he felt 
that with such a high signal to clutter (2 40), it does not matter if the 
target is resolved or not, and MDT (hot/cold spot) detection would give a 
longer detection range than MRT. If the SCR is < 40, MRT is used with 
the target contrast, ATA.K, being the difference of the average temperature 
of the target facets seen by the sensor and the background temperature. 
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If the target is unresolved at a given range, it is either detected with the 
MDT methodology or is not detectable at all. If the unresolved target is 
detectable using MDT, then SCR > 40. In that case, ATMAX is used for the 
target and background contrast. If SCR < 40, and the target is unresolved, 
then the clutter is too high, and no detection occurs at this range and the 
range must be decreased for detection to occur. These results are 
summarized in table 2. 

Table 2. Summary of detection methods 

SCR Line pairs on target 
<l 2.5 

Method 
MRT 

<1<10r 1.0 MRT 

10 <40 0.5 MRT 

240 MDT 

For calculating the SCR in the above procedures, Schmieder 
recommended using the signal ATMAX rather than ATAVG, for the reason 
that in his 1982 SCR study [6] the signal component was defined as ATMAX 
rather than ATAVG. 

2.2.2.2 Determination of SCR 

In the absence of actual imagery of the target area, Schmieder estimated 
clutter from a combination of scene complexity and S,. We present his 
methodology in some detail below. 

Schmieder’s SCR algorithm affects the acquisition range by modifying the 
number of line pairs (N) on target. At 50 percent probability of detection, 
Schmieder’s results can be formulated as [15] 

1.64 H 
N= 

(log(SCR) + 1 .2)‘.5’ ;;” 
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for SCR 2 0.1. The TAWS uses the target height for the target-critical 
dimension, Htarg. In order to determine SCR from eq (6) both the target 
contrast (ATT) and the clutter temperature, CT must be known. CT, in 
turn, requires knowledge of both scene contrast and scene complexity. 
Because the TAWS does not produce or use target- and background-scene 
images, it cannot compute clutter as originally defined by Schmieder. To 
rectify this problem, Schmieder [16] recommended that clutter be 
computed based on Cr. He assumed that on the average, the target 
contrast, ATT, which represents the temperature difference between target 
and background, would be equal to 2 “C. Schmieder then used eq (6), 
with the average ATT 2 “C, coupled with SCRs of 40, 10, 4, and 1, 
representing clutter states of none, low, moderate, and high respectively, 
to determine values for CT. Schmieder states [16], “Clearly, other 
assumptions of target signal and SCR would lead to other associated 
values. The values shown (in table 3) are used as a starting point to be 
used until the results of further research can yield a better basis for these 
choices.” 
A method for relating scene contrast (SC) to the clutter levels is needed. 
Schmieder chose [17] SC ranges of 0 to 1, 1 to 2, 2 to 4, and > 4 to 
correspond to the clutter levels of none, low, moderate, and high, 
respectively. These quantities (SCR, CT, SC) and their relation to clutter 
level are summarized in table 3. 
Table 3. Clutter temper; 

Clutter 
level 
none 

low 

moderate 

high 

SCR 
40 

10 

4 

1 

we CT values 

CT (degrees C) 
.05 

.2 

.5 

2 

SC range 
(degrees C) 

21.0 

> 1.0 - 52.0 

> 2.0 - < 4.0 

> 4.0 

To obviate the need for the user to select a clutter level, the TAWS 
implemented Schmieder’s algorithms to determine CT based on a user 
input of JR-scene complexity and a calculation of scene-thermal contrast 
by the TAWS IR model. [X3] The algorithm for determination of SC as 
found in TAWS, is presented in table 4. In this table, TB is a background 
temperature and the subscripts 1 and 2, H and L refer to the first and 
second, high and low background temperatures, respectively. Table 5 
and figure 3a show the original implementation. 



Table 4. Algorithm for determining SC 
Number of SC value 

backgrounds (degrees C) 
1 0.5 

2 1 TBI -TBZ 1 

3 TBH-TBL 

None .05 .05 .05 .05 

Low > 05 .2 .2 .2 

Medium .05 .2 .5 .5 

High .05 .2 .5 2.0 

In operational use it was found that the step function shown in figure 3a 
resulted in occasional discontinuities in detection range. To mitigate this, 
the step function was replaced with the continuous linear functions 
shown in table 6 and figure 3b. Hence, in conjunction with scene 
complexity, the larger the temperature difference among backgrounds 
(i.e., the higher the scene contrast SC), the higher the value of CT, which in 
turn lowers the value of SCR (cc C$). The lower SCR is, the fewer 
equivalent line pairs there are per target (see eq [7]), which effectively 
reduces the detection range. In general, as the number of backgrounds 
increases the detection range will change, generally decreasing in value 
somewhat. This is reasonable since by adding backgrounds, one is 
effectively increasing the clutter and making the target more difficult to 
detect. Thus, the algorithm in TAWS for determining CT is reasonable; 
however, the boundaries for CT and SC, chosen by Schmieder [16,17] 
using his experience and expertise, are subject to review. As indicated in 
a previous paragraph for CT; and as Schmieder pointed out [17] for SC 
“These values result from heuristic and judgmental considerations. They 
have not been derived from sensitivity trades, which rigorously calculate 
the clutter levels that are obtained from various background contrast 
conditions. Such a comprehensive study will be eventually needed to 
arrive at more fully supported values.” 
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Figure 3a. Initial clutter temperature algorithm. Figure 3b. Current clutter temperature algorithm. 

Table 6. Current TAWS implementation of CT algorithm 

Scene 
SC (degrees Cl 

complexity 
0 to 1 >1to3 >3to4 

CT (degrees Cl 

None .05 .05 .05 

Low .05 +0.15 SC .2 .2 

>4 

.05 

.2 

.05 +0.15 SC .5 

High 

This clutter algorithm has an unexpected effect on MRT detection ranges. 
When only one background is selected by the user (i.e., no scene-thermal 
clutter), or if the temperature difference among the selected backgrounds 
is I 1.0, the acquisition range found is the same whether the user selected 
scene complexity is low or medium. Note the middle scene contrast 
categories now break at 3” rather than 2” for medium-scene complexity. 
This change is not significant since the impact on clutter temperature is at 
most .15”, and the original distinction between low and moderate scene 
contrast categories was an arbitrary selection between the threshold 
values of 1 for none and 4 for high. 
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2.2.3 Discussion 
Johnson’s paper mentioned the issue of background clutter. He 
emphasized that his detection criteria (1.0~line pairs) were applicable 
under conditions that required some degree of target shape 
discrimination in order to detect the target from other objects in the 
background, (i.e., where background clutter was present). He also stated 
that the number of line pairs required to attain a particular detection 
probability could vary significantly depending upon the nature of the 
background clutter. This raised a number of questions as to the 
significance of background clutter on the validity of the Johnson criteria, 
especially since Johnson did not provide a definition of clutter. 

Schmieder noted that the Johnson criteria for target detection (1.0 cycles 
or line pairs) correlated well with his moderate-clutter category (implying 
that such a level of clutter was probably present in Johnson’s work, 
although Johnson did not measure it). Comparison of Schmieder’s 
detection probability as a function of resolution with Acquire’s TTPF (see 
figure 4) clearly shows that Acquire’s formalization compares favorably 
with Schmieder’s moderate clutter. Other clutter levels can be 
accommodated in Acquire by varying NSO. 

Figure 4. Probability 
of detection versus 

nlution for 50 
7 t acquisition 

.’ 7 the TAWS 
,. i s ., fiwquire 
algorithms. 

0 1 2 3 

Resohtion (The Pairs /Target) 
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3. Comparisons 

3.1 Scenarios 

To compare these two complex target-acquisition models requires 
standardization of as many parameters as possible. To accomplish this, 
one weather scenario was used in conjunction with one sensor and target, 
both with fixed orientations. 

A winter scenario was chosen and examined using an exercised T-80 
Soviet main battle tank against two backgrounds (vegetation and snow) 
at JR wavelengths. The sensor and tank were aligned such that the sensor 
always had a frontal view of the tank; the sensor height was fixed at 300 ft 
facing north. To minimize shadow effects, the date was fixed at 21 
December at a local time of 12N. The location was also fixed at latitude of 
37’32’ N, longitude of 127’00’ E (Seoul, S. Korea). The weather conditions 
include (see table 7) clear skies with varying visibility and relative 
humidity, and overcast skies with varying visibility and relative 
humidity. Additional cases were run including light/heavy fog 
conditions, snow, drizzle, and ram. 

Table 7. Weather conditions used in the study 
Relative 30% 50% 80% 100% 100% 80% 90% 90% 
Humidity none none none light heavy snow light moderate 
Precipitation fog fog rain rain 

Cloud ckar clear clear clear clear 1, 
i 

Cover i. 
overcast overcast overcast overcast overcast overcast overcast overcast 

2kI-n 2 2 2 2 2 2 2 

5km 5 5 5 5 5 iv’.- --; Visibility 
i- 
i 

1okn-l 10 10 10 f -. 10 10 
[ f. : 

. $ :.‘. 

1 15 
‘:- ‘., 

15km 15 15 15 15 I- 1 I;.. 
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3.2 Model Runs 
The TAWS was run using winter climatology along with the weather 
conditions listed in table 7. Comparisons were made with the scene 
complexity initially set at “low.” To reduce the possibility of errors, 
Acquire was initially run separately; however, this procedure was fraught 
with problems (see table 8). To alleviate this, the Acquire algorithm was 
programmed directly into TAWS, thereby, insuring that the many values 
(AT, atmospheric transmission) were identical in both programs. 
Discussion on the problem and their resolution appear in table 8. 

Table 8. Problems between the TAWS and Acquire algorithms and their 
resolution 

Problem Routine Resolution 
TAWS Acquire 

Characteristic Target height 4 (xeff * Yeff) Target height 
dimension 

Sensor curves 

Aspect ratio 

Horizontal (1D) 

d (7/2 X&Y+) 

Horizontal and 
Vertical (2D) 

r3 

Backgrounds 3 allowed N/A 1 used 

Scene None, low, N/A+ Low 
complexity moderate, high 

+ See section 3.2.5 

3.2.1 Characteristic Dimension 

The TAWS and Acquire use different target-characteristic dimensions. 
For MRT calculations, TAWS uses the target height; whereas, 2D Acquire 
uses the square root of the target’s projected area as seen by the sensor. 
When Acquire was programmed into the TAWS, thereby using a 1D 
formulization, the characteristic dimension was changed to use the target 
height. 

In the course of this study the TAWS and Acquire target T-80 Soviet main 
battle tank databases were examined; the results from TAWS and Acquire 
databases, and additional sources, are presented in table 9. The 
CASTFOREM is the U.S. Army’s entity level warfare simulation; World 
Wide Web (WWW) 1,2, and 3 were taken from various, unsubstantiated, 
WWW sources for comparison purposes. The values selected for the 
various dimension sizes probably represent different configurations of 
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the T-80 (cf. figures 5a and b). Using the gun-forward length is not 
representative of the actual target size and will produce overly optimistic 
detection ranges. The TAWS database has been subsequently changed to 
reflect the more accurate values. Once Acquire was coded into the 
TAWS, both algorithms used the same database. 

T-80B 1 

Figure 5a. T-BOB Figure 5b. T-8OU 

Table 9. T-SO dimensions 

Source Length (ml Width (m) Height (m) 
Acquiret 3.59 2.64 

TAWS 9.1 4.64 3.73 

CASTFOREM 6.75 3.55 1.5** 

wwwl 9.7 3.6 2.2 

WWW2 9.9/7.45 3.4 2.2 

WWW3 7.01 3.6 2.20 

$ values are for projected area 
5 gun forward/hull 

** does not include turret 
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3.2.2 Sensor Curves 

Because the TAWS was constructed during the 198Os, it uses 1D MRT 
curves, whereas, Acquire uses 2D MRT curves. Initially, before coding 
the Acquire algorithm into TAWS and the two codes. were executed 
separately, it was necessary to ensure that the two IR sensor curves that 
were being used were the same. This was accomplished by multiplying 
the TAWS abscissa by the normalization factor of .75 (see section 2.2.1); 
the resulting comparison is presented in figure 6. As shown, the two 
sensor curves are identical. When Acquire was coded into TAWS and 
thus used TAWS MRT curves, N50 for detection was changed from .75, 
appropriate for the 2D algorithm, to 1.0, appropriate for the 1D algorithm. 

Figure 6. 
Comparison of the 
TAWS and Acquire 
MRT curves. 

q m zm +m 6m xm IOU 
Zp~.il~r~u,nc,(q.Cchnmdl 

3.2.3 Aspect Ratios 

Ln 1D Acquire, the target was described by its minimum dimension; thus, 
targets with dimensions (length x width) of 2mx2mor2mx4mor2mx16m 
and identical AT would all be equally detectable according to 1D Acquire. 
The aspect ratio adjustment compensates for this unrealistic result. This 
is an important issue for large aspect ratio targets such as battleships but 
not for the typical aspect ratios of ground vehicles. In 2D Acquire, the 
target is described by the square root of its area; thus, the 2 m x 16 m 
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target will have a higher estimated probability of detection than the 2 m x 
2 m target. Therefore, in moving from 1D to 2D Acquire, we have gone 
from the simplifying assumption that all targets of the same height are 
equally detectable (given the same AT) to the simplifying assumption that 
all targets with the same presented area are equally detectable; however, 
aspect ratios > 3 are not recommended for Acquire. [3] For the typical 
aspect ratios of ground vehicles, this is a reasonable simplifying 
assumption for 2D Acquire. 

When using 1D acquisition models such as TAWS, the first step 
conventionally performed in range prediction is to convert the laboratory 
MRT to take into account the scene object aspect ratio (maximum to 
minimum object dimension) if use is to be made of the concept that an 
object is more readily discerned if the aspect ratio is greater than unity. 
The laboratory MRT is computed or measured with a bar aspect ratio of 7. 
It can be shown [19] that 

h’lRTfield = MRT,/%@%j, 

where E is the scene aspect ratio. 

For example, for detection only one cycle is required (N = NSO = l), 
yielding MRTa,ld = MRTlf7/2E. Within TAWS, the MRT is adjusted 
by a factor of ,/7X, I 2Ypff , where Xeff (along-track) and Yeff (cross-track) 
are the projected target dimensions at a given range. The cross-track and 
along-track dimensions, viewed in a plane coincident with the sensor, are 
the abscissa and ordinate, respectively. Since the calculation of aspect 
ratio is integral to TAWS calculations, no changes were made to the 
algorithm. 

3.2.4 Backgrounds 

The TAWS allows calculations for scenes that include up to three 
backgrounds; whereas, Acquire does not consider differing backgrounds, 
primarily because Acquire accounts for clutter through variation of the 
parameter N50. The TAWS backgrounds are intimately connected with 
the clutter calculations (see section 2.2.2), allowing ATT in eq (6) to vary 
as the backgrounds are cycled. Thus, eq (6) can be rewritten as 
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(9) 

where the subscript i refers to the background under consideration 
(considered primary) and the subscript i refers to the number of (user- 
entered) backgrounds NB (maximum of 3). Thus, the TAWS detection 
ranges for all backgrounds are calculated with the displayed background, 
as printed on the output, considered primary. A discussion of the lack of 
backgrounds in Acquire, which are intimately tied to the clutter 
calculations in TAWS, is deferred to the clutter section below. 

3.2.5 Clutter 

Schmieder’s work, as implemented in TAWS, accounts for various levels 
of clutter; whereas, Acquire only accounts for clutter by varying NSO. 
However, as shown in section 2, Acquire’s algorithm, with N50 = 1 
(detection) compares favorably with Schmieder’s at moderate clutter 
levels. To effectively represent Schmieder’s low and high clutter cases, 
NSO takes on values of 0.5, and 2.5 respectively (see figure 7). 
is a subjective measure, other values of N.50 may be chosen. 

Since clutter 

Figure 7. Acquire 
versus the TAWS clutter 
comparison. 

m 1 2 3 4 

Resolution (Line Pairs I Target) 



3.3 Results 

The December 21 cases were run using low-scene complexity with a 
single vegetation background in TAWS, and with N50 = 0.5 in Acquire. 
Results showing the detection ranges predicted at noon in each case by 
TAWS and Acquire are shown in figure 8. 

Examination of the data shows a maximum value for the TAWS 
calculations at 32.1 km for the vegetation background due to sensor 
optical resolution limits. Because this limits scales with target height, a 
determination can be made using values taken from reference 
18 tables A.l-2. For the sensor and target chosen the range limit turns out 
to be 32.8 km in good agreement with the TAWS values. This same cutoff 
for a maximum detection range was applied to the Acquire results. 

For detection ranges less than 10 km the agreement between Acquire and 
TAWS was also good. Between these high and low detection ranges, i.e., 
midrange values between 10 and 30 km, Acquire predictions were 
10 to 15 percent lower than the TAWS. Specifically, the cases with heavy 
fog or precipitation have identical values below 10 km, while the cases 
with low or moderate humidity and high visibilities have values of km. 
Thus, we may draw the conclusion that the contribution from 
approximately 32 clutter is irrelevant in instances when the weather 
conditions are either extremely unfavorable (low visibility) or extremely 
favorable (high visibility). 

Figure 8. The 
5 versus 

iire-detection 
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Some of the discrepancy between the TAWS and Acquire in the midrange 
may be explained by the fact that the clutter temperature in the TAWS 
runs with one background and low-scene complexity is 0.125 “C (tables 4 
and 6), which equates to an NSO value of approximately .3, while the value 
used for these Acquire runs (N5o = 0.5) could be associated with a 
low-clutter value of 0.2 “C. However, note that Acquire does not use 
clutter temperature directly. Increasing the clutter temperature to 0.2 “C 
in the TAWS, by including an additional background with an appropriate 
scene contrast temperature, did lower the TAWS range but only 
accounted for less than half of the discrepancy between the TAWS and 
Acquire values. When additional Acquire runs were made with NSO set 
= .3, which is not strictly analogous to calculating a clutter level in TAWS, 
the results were within 5 percent of the TAWS values. 

3.3.1 Clutter/Complexity Effects 

Because the user can select a scene complexity level of none, low, 
moderate, or high in the TAWS (specified as Clutter/Complexity in the 
User Interface), it is important to understand how this selection affects the 
resulting detection range. Only one background was used for these 
comparisons in order to hold constant the scene contrast component of 
clutter. These comparisons showing the effects of the choice of scene 
complexity in TAWS include the complete hourly data from the 
December 21 runs, rather than just the noontime data. The standard 
deviations of the difference between TAWS and Acquire detection ranges 
throughout each daily run are small, indicating that diurnal variations 
behave similarly in both TAWS and Acquire. In general, most cases using 
one background displayed a decrease in detection range of approximately 
5 percent when scene complexity was increased from none to low or 
moderate, and another 5 percent decrease when scene complexity was 
increased from low or moderate to high. However, there is a fair amount 
of variation from this typical result, as shown by the sample of runs 
plotted in figure 9. In this figure, the abscissa represents the cases run 
(generally in order of cases with low humidity on the left to cases with 
high humidity and precipitation on the right), and the ordinate showing 
the percent of the resulting detection range with a given level of scene 
complexity compared to the range found with scene complexity set to 
none. Note from tables 4 and 6 that with only one background low- and 
moderate-scene complexity will return the same values. 
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Figure 9. Scene 
complexity effects 
on target- detection 
ranges. 
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The primary exception to the general impact of varying scene complexity 
occurs both when TAWS detection ranges are very long and when they 
are very short. For example, results plotted toward the left side of 
figure 9 include cases where humidity is 50 percent or less, and there is 
no fog or precipitation. These conditions result in long detection ranges, 
which are not substantially decreased when the scene complexity level is 
increased. Additionally, cases plotted on the right side of the graph 
provide very short detection ranges due to fog or precipitation; so that 
increasing the complexity level has no corresponding decrease in 
detection range, since the detection range is already so restricted. Other 
deviations are related to the selected visibility in each case, with 
increasing scene complexity causing impacts more than the usual 
5 percent when visibility is great. In order to highlight the general trend, 
cases with visibilities of 2 and 15 km have been omitted from figure 9, 
which would otherwise show even greater fluctuations. The cases potted 
with visibilities of 5 and 10 km reflect some fluctuation related to whether 
the cloud cover was entered as clear or overcast, which accounts for the 
up-and-down nature of the graph. 

Another result occurs when multiple backgrounds are selected in the 
TAWS. The previous results were based on cases using vegetation as the 
only background. If a second background is added, it affects the 
detection range predicted for the first background if the complexity level 
is set to anything other than none. The effect of adding a second 
background is shown in table 10, using the noontime values and 
excluding the cases reflecting extreme high or low detection ranges. As 
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expected, detection ranges for the vegetation background decrease when 
the second background of snow is added, since the clutter has been 
increased. Additionally, detection ranges for the vegetation background 
increase when snow is entered as the primary background with 
vegetation as the secondary background. This is expected because the 
thermal contrast (AT) between the target and the background is calculated 
using the first, or primary, background entered in TAWS; the secondary 
background does not interact with the target. Because snow has a higher 
albedo than the vegetation, a relatively greater amount of the solar 
radiation is reflected onto the tank surface raising its temperature; and, 
thus, producing the larger contrast value. 

Table 10. Impact of a second background on detection range 
TAWS Range (km) 
Vegetation Vegetation 
background background 

Vegetation primary with secondary with 
Scene background snow background snow background 

complexity only secondary primary 
None 22.46 22.46 23.30 

Low 21.46 21.36 22.22 

Moderate 21.46 21.07 21.95 

High 20.39 19.87 20.81 

As discussed in section 2.2.2, rather than a second choice of a background 
for a what if capability to see two separate background results in a single 
model run, adding a second background serves to add clutter to the 
scene, with the greatest impact in conjunction with the selection of 
moderate-or-high complexity. Note that when multiple backgrounds are 
selected, there can be a difference between detection ranges based on low 
and moderate complexity, as well as even greater differences between 
moderate and high complexity than seen with just one background. This 
is a reasonable result, and has been highlighted in the updated TAWS 
user documentation (Version 2.1 and greater). In cases with multiple 
backgrounds, the clutter temperature CT will not necessarily be consistent 
for each time in a 24-hour run, or between cases with varying weather 
input, due to the differential heating of the target and the different 
background types. However, to get an idea of the total effects possible 
under different clutter amounts, a single example at a single time shows a 
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decrease in detection range from 19.69 km based on a single background 
and no scene complexity to 15.75 km based on three backgrounds and 
high-scene complexity. 

3.3.2.2 Weather Effects 

Although one purpose of this report is to compare the predicted target- 
detection ranges output by the TAWS and Acquire, it is also worth 
examining the effects of weather on the predicted ranges. Varying 
visibility, relative humidity, cloud cover, fog, and precipitation resulted 
in similar impacts to detection ranges in both the TAWS and Acquire, 
consistent with at least qualitative expectations of how these atmospheric 
properties affect IR sensors. [20,21] 

The following examples are based on fairly realistic winter-weather 
scenarios for Seoul, Korea. Climatological temperature values varied 6 “C 
over the 24-hr period, with less variation in dew-point temperature 
values, resulting in a typical increase in relative humidity values in the 
early morning and lower relative humidity in the afternoon. These same 
temperature values were used whether or not clouds, fog, or precipitation 
were included. These examples are based on low-scene complexity and 
one background in the TAWS, and NSO = 0.5 in Acquire. As discussed 
above, increasing the complexity level to high provided somewhat 
shorter detection ranges in most cases, but yielded similar results in terms 
of weather impacts on detection-range predictions. Table 11 lists the 
noontime detection ranges calculated by the TAWS (number in upper left 
of cell) and Acquire (nwnber in lower right of cell) for each weather 
scenario. As previously discussed, the Acquire values are not resolution 
limited to the TAWS’ appropriate maximum of 32 km in cases with high 
visibility and no fog or precipitation. Other cases, which include fog or 
precipitation seem to return detection ranges around 7 km using Acquire, 
while the TAWS provides much lower detection ranges. Otherwise, 
Acquire results show similar impacts based on weather and diurnal 
effects as the TAWS, and subsequent discussions will highlight the 
specific-weather impacts using the TAWS data. 
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Table 11. Detection ranges as a function of various weather scenarios 

Detection Ranges (km) TAWS Acquire 

RH 30 % 50 % 80 % 100 % 100% 80 % 90% 90% 
Precipitation none none none light heavy snow light moderate - 

Cloud 
Cover 

(2 21 18 20 18 19 16 5 5 2 2 
2 18 16 17 15 16 14 5 5 2 2 
“, 5 32 28 30 27 28 24 12 10 4 5 
g 

2 10 

29 32 25 32 27 32 23 31 24 32 20 28 10 18 15 9 4 7 6 5 

32 32 32 29 30 25 15 14 7 6 
.5: > 15 32 32 32 32 32 29 21 18 10 6 

32 32 32 32 32 27 18 16 9 6 

3.3.2.1 Visibility 
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Although IR sensors are useful for detecting targets at ranges 
beyond the distance visible to the unaided eye, the same 
atmospheric constituents, which reduce visibility, will reduce lR 
detection ranges, although to a different amount. Figure 10 
illustrates the impact of reduced visibility on TAWS. Under the 
benign conditions of low-relative humidity (around 30 percent at 
noon), clear skies, and 15 km visibility, TAWS provides a 
maximum sensor-detection range limit of 32 km throughout the 
24-hour period. The other examples with clear skies result in an 
increase in detection ranges during daylight hours, as solar 
loading heats the target more than the background, resulting in a 
greater AT (or differential in target/background temperatures). 
Visibility decreasing from 15 to 10 km generates minimal impacts, 
but going from 10 to 5 km causes a 15 percent decrease in 
detection range, while going from 5 to 2 km results in a 35 percent 
decrease. 

. 
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3.3.2.2 Relative Humidity 

Atmospheric moisture absorbs IR signals. Because the time series 
of temperature values is consistent in each case, changing the 
relative humidity is equivalent to changing the amount of water 
vapor or absolute humidity available for attenuation of the sensor 
signal. Figure 11 shows an example of increasing humidity 
resulting in decreasing detection ranges. Since the cold winter 
temperatures used in these cases do not allow the atmosphere to 
contain significantly more moisture, the detection range is only 
decreased by 10 percent as humidity is varied from low 
(approximately 30 percent; equivalent to 2 g/m3) to high 
(approximately 80 percent; equivalent to 4 g/m3). However, 
comparable runs made using summer temperatures show noon- 
time detection range predictions of 28 km in low humidity . 
(approximately 30 percent; equivalent to 7 g/m”) falling to 13 km 
in high humidity (approximately 80 percent; equivalent to 
19 g/m”), reflecting more than a 50 percent decrease. 
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Figure 11. 
Relative humidity 
impacts on the 
TAWS-detection 
ranges. 
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3.3.2.3 Sky Cover 
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The primary effect of cloud cover above the sensor path is based on the 
cloud’s influence on heating and cooling of the target and the 
background. As shown in figure 12, this example exhibits slightly longer 
detection ranges during the night with overcast skies compared to clear 
skies. Although both the target and the background temperatures are 
affected by the clouds, so that the AT remains smaller than when no 
clouds are present, less radiational cooling allows the thermal imager to 
detect the warmer target at slightly longer ranges than under clear skies. 
Cloud cover has a greater impact during the day, as the reduced solar 
loading provides only a 5 percent detection range increase, while the case 
with no clouds produces a twenty percent greater detection range during 
the daytime. 
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Figure 12. Sky 
cover impacts on the 
TAWS-detection 
ranges. 
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3.3.2.4 Fog and Precipitation 

The type, size, and number of atmospheric particles associated with fog 
and precipitation significantly attenuate target acquisition sensor signals. 
Figures 13 and 14 display different Y-axis values than preceding charts, 
reflecting the substantially reduced detection ranges predicted under 
conditions of fog or precipitation. Although radiative fog is generally not 
associated with overcast conditions, total sky cover has been used to 
provide consistency in comparing results. These cases show no diurnal 
variation in detection ranges, since the target and background heating 
and cooling cycles are dampened by the liquid water in the atmosphere. 
The TAWS provides detection ranges of approximately 4.5 km for both 
the light/radiation fog and light-rain cases. Compared to light fog or 
rain, the TAWS reflects approximately 40 percent decrease in detection 
range for moderate rain, 60 percent decrease for heavy/advection fog, 
and 65 percent decrease for snow. 
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4. Conclusions 

It is important that Acquire be merged into the TAWS so that the services 
can predict target acquisition of ground targets using recognition and 
identification in addition to detection. The incorporation of the Acquire 
SPM into the TAWS is scheduled for the TAWS Version 3, which will be 
released for use in 2001. These comparisons of the target-acquisition 
range output from the current version of the TAWS with output from 
Acquire provide positive feedback on the benefits of this enhancement to 
the TAWS, while maintaining the existing interfaces and providing 
comparable target-detection range predictions. The primary benefit of 
this enhancement will be the ability to specify target-acquisition 
discrimination levels, including detection, recognition, and identification. 
Decisions will need to be made on an efficient and appropriate selection 
of N50 for use in the Acquire SPM. 

Because the cases examined in this report are limited to a winter scenario 
in Korea, specific quantitative results of the selected weather parameters’ 
impacts on target-detection range cannot be generalized to all situations. 
However, these cases do highlight the importance of considering accurate 
atmospheric conditions in target-acquisition predictions. Results 
showing a smaller weather impact to Acquire-detection ranges than 
predicted using the current TAWS SPM under conditions of fog or 
precipitation warrant additional investigation. 
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IFOV 
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IR 

MDT 

MRC 

MRT 

NVESD 

SCR 

SPM 

TASC 

TAWS 

TCM2 

TDA 

TRAC 

one dimensional 

two dimensional 

Army Materiel Systems Analysis Agency . 

U.S. Air Force Research Laboratory 

Combined Arms and Support Taskforce Evaluation 
Model 

Electra-Optical Tactical Decision Aid 

U.S. Army Engineer Research and Development 
Laboratories 

forward-looking infrared 

Georgia Tech Research Institute 

instantaneous field of view 

Integrated Weather Effects Decision Aid 

infrared 

minimum detectable temperature 

minimum resolvable contrast 

minimum resolvable temperature 

Night Vision and Electronic Sensors Directorate 

signal-to-clutter ratio 

Sensor Performance Model 

The Analytic Sciences Corporation 

Target Acquisition Weather Software 

Target Contrast Model 2 

tactical decision aid 

TRADOC Analysis Center 
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TTPF 

www 

Training and Doctrine Command 

Target Transform Probability Function 

World Wide Web 
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